Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.26.525770

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, can infect animals by binding to the angiotensin-converting enzyme 2 (ACE2). Equine infection appears possible due to high homology (≈97%) between human and equine ACE2, evidence of in vitro infection in cell lines expressing equine ACE2, and evidence of seroconversion in horses after exposure to persons infected with SARS-CoV-2. Our objective was to examine susceptibility of cultured primary equine bronchial epithelial cells (EBECs) to a SARS-CoV-2 pseudovirus relative to human bronchial epithelial cells (HBECs; positive control). ACE2 expression in EBECs detected by immunofluorescence, western immunoblotting, and flow cytometry was lower in EBECs than in HBECs. EBECs were transduced with a lentivirus pseudotyped with the SARS-CoV-2 spike protein that binds to ACE2 and expresses the enhanced green fluorescent protein (eGFP) as a reporter. Cells were co-cultivated with the pseudovirus at a multiplicity of infection of 0.1 for 6 hours, washed, and maintained in media. After 96 hours, eGFP expression in EBECs was demonstrated by fluorescence microscopy, and mean Δ Ct values from quantitative PCR were significantly (P < 0.0001) higher in HBECs (8.78) than HBECs (3.24) indicating lower infectivity in EBECs. Equine respiratory tract cells were susceptible to infection with a SARS-CoV-2 pseudovirus. Lower replication efficiency in EBECs suggests that horses are unlikely to be an important zoonotic host of SARS-CoV-2, but viral mutations could render some strains more infectious to horses. Serological and virological monitoring of horses in contact with persons shedding SARS-CoV-2 is warranted.


Subject(s)
Infections , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.04.467275

ABSTRACT

The phagocytosis and destruction of pathogens in lysosomes constitute central elements of innate immune defense. Here, we show that Brucella , the causative agent of brucellosis, the most prevalent bacterial zoonosis globally, subverts this immune defense pathway by activating regulated IRE1α-dependent decay (RIDD) of mRNAs encoding BLOS1, a protein that promotes endosome-lysosome fusion. RIDD-deficient cells and mice harboring a RIDD-incompetent variant of IRE1α were resistant to infection. Non-functional Blos1 struggled to assemble the BLOC-1-related complex (BORC), resulting in differential recruitment of BORC-related lysosome trafficking components, perinuclear trafficking of Brucella -containing vacuoles (BCVs), and enhanced susceptibility to infection. The RIDD-resistant Blos1 variant maintains the integrity of BORC and a higher-level association of BORC-related components that promote centrifugal lysosome trafficking, resulting in enhanced BCV peripheral trafficking and lysosomal-destruction, and resistance to infection. These findings demonstrate that host RIDD activity on BLOS1 regulates Brucella intracellular parasitism by disrupting BORC-directed lysosomal trafficking. Notably, coronavirus MHV also subverted the RIDD-BLOS1 axis to promote intracellular replication. Our work therefore establishes BLOS1 as a novel immune defense factor whose activity is hijacked by diverse pathogens.


Subject(s)
Bacterial Infections , Parasitic Diseases
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.05.327528

ABSTRACT

Heat treatment denatures viral proteins that comprise the virion, making virus incapable of infecting a host. Coronavirus (CoV) virions contain single-stranded RNA genomes with a lipid envelope and 4 proteins, 3 of which are associated with the lipid envelope and thus are thought to be easily denatured by heat or surfactant-type chemicals. Prior studies have shown that a temperature of as low as 75 oC and treatment duration of 15 min can effectively inactivate CoV. The applicability of a CoV heat inactivation method greatly depends on the length of time of a heat treatment and the temperature needed to inactivate the virus. With the goal of finding conditions where sub-second heat exposure of CoV can sufficiently inactivate CoV, we designed and developed a simple system that can measure sub-second heat inactivation of CoV. The system is composed of capillary stainless-steel tubing immersed in a temperature-controlled oil bath followed by an ice bath, through which virus solution can be flowed at various speeds. Flowing virus solution at different speeds, along with a real-time temperature monitoring system, allows the virus to be accurately exposed to a desired temperature for various durations of time. Using mouse hepatitis virus (MHV), a beta-coronavirus, as a model system, we identified that 85.2 oC for 0.48 s exposure is sufficient to obtain > 5 Log10 reduction in viral titer (starting titer: 5 x 107 PFU/mL), and that when exposed to 83.4 oC for 0.95 s, the virus was completely inactivated (zero titer, > 6 Log10 reduction).


Subject(s)
Chemical and Drug Induced Liver Injury
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.05.327197

ABSTRACT

It was recently shown that the major genetic risk factor associated with becoming severely ill with COVID-19 when infected by SARS-CoV-2 is inherited from Neandertals. Thanks to new genetic association studies additional risk factors are now being discovered. Using data from a recent genome-wide associations from the Genetics of Mortality in Critical Care (GenOMICC) consortium, we show that a haplotype at a region associated with requiring intensive care is inherited from Neandertals. It encodes proteins that activate enzymes that are important during infections with RNA viruses. As compared to the previously described Neandertal risk haplotype, this Neandertal haplotype is protective against severe COVID-19, is of more moderate effect, and is found at substantial frequencies in all regions of the world outside Africa.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL